Harbour All Functions – H

HardCR

HBClass()

HB_ANSITOOEM()

hb_At

hb_cdpSelect

HB_ColorIndex

HB_DiskSpace

HB_EOL

HB_FEof

hb_FLock

hb_FUnlock

hb_gcAll
hb_gcAlloc
hb_gcCollectAll
hb_gcFree
hb_gcItemRef

hb_GetEnv

hb_HAllocate

hb_Hash
hb_HAutoAdd
hb_HBinary
hb_HCaseMatch
hb_HClone
hb_HCopy
hb_HDefault
hb_HDel
hb_HDelAt
hb_HEval
hb_HFill
hb_HGet
hb_HGetDef
hb_HHasKey
hb_HKeyAt
hb_HKeys
hb_HMerge
hb_HPairAt
hb_HPos
hb_HScan
hb_HSet

hb_HSetAutoAdd()
hb_HSetBinary() 
hb_HSetCaseMatch()

hb_HSort
hb_HValueAt
hb_HValues

hb_idleAdd
hb_idleDel
hb_idleState

hb_inetAddress
hb_inetCleanup
hb_inetClearError
hb_inetClearPeriodCallback
hb_inetClearTimeLimit
hb_inetClearTimeout
hb_inetClose
hb_inetConnect
hb_inetConnectIP
hb_inetCount
hb_inetCreate
hb_inetCRLF
hb_inetDataReady
hb_inetDGram
hb_inetDGramBind
hb_inetDGramRecv
hb_inetDGramSend
hb_inetErrorCode
hb_inetErrorDesc
hb_inetFD
hb_inetGetAlias
hb_inetGetHosts
hb_inetGetRcvBufSize
hb_inetGetSndBufSize
hb_inetInit
hb_inetIsSocket
hb_inetPeriodCallback
hb_inetPort
hb_inetRecv
hb_inetRecvAll
hb_inetRecvEndblock
hb_inetRecvLine
hb_inetSend
hb_inetSendAll
hb_inetServer
hb_inetSetRcvBufSize
hb_inetSetSndBufSize
hb_inetstatus
hb_inetTimeLimit
hb_inetTimeout

HB_IsByRef()

hb_keyPut

hb_langErrMsg
hb_langMessage
hb_langName
hb_langSelect

hb_mathErBlock
hb_mathErMode
hb_mathGetErrMode
hb_mathGetHandler
hb_mathGetLastError
hb_mathIsMathErr
hb_mathResetError
hb_mathSetErrMode
hb_mathSetHandler

hb_MemoRead
hb_MemoWrit

hb_RAt

hb_PIsByRef

hb_PValue

hb_SetKeyCheck
hb_SetKeyGet
hb_SetKeySave

hb_setListenerAdd

hb_setListenerNotify
hb_setListenerRemove

hb_SetMacro

hb_Translate

hb_ValToStr

Header

HexaToDec

Harbour Database Functions

Database Functions

AFields Fills referenced arrays with database field information
Alias Returns the alias name of a work area
BOF Test for the beggining-of-file condition
dbAppend Appends a new record to a database file
dbClearFilter Clears the current filter condiction in a work area
dbCloseAll Close all open files in all work areas.
dbCloseArea Close a database file in a work area
dbCommit Updates all index and database buffers for a given workarea
dbCommitAll Flushes the memory buffer and performs a hard-disk write
dbCreate Creates an empty database from a array
dbDelete Mark a record for deletion in a database
dbEval Performs a code block operation on the current Database
DBF Alias name of a work area
dbFilter Return the filter expression in a work area
dbGoBottom Moves the record pointer to the bottom of the database
dbGoto Position the record pointer to a specific location
dbGoTop Moves the record pointer to the top of the database
dbRecall Recalls a record previousy marked for deletion
dbSeek Searches for a value based on an active index
dbSelectArea Change to another work area
dbSetDriver Establishes the RDD name for the selected work area
dbSetFilter Establishes a filter condition for a work area
dbSkip Moves the record pointer in the selected work area
dbSkipper Helper function to skip a database
dbStruct Builds a multidimensional array of a database structure
dbUseArea Opens a work area and uses a database file
Deleted Tests the record’s deletion flag
EOF Test for end-of-file condition
FCount Counts the number of fields in an active database
FieldDeci Determines the number of decimal places of a given numeric field
FieldGet Obtains the value of a specified field
FieldName Return the name of a field at a numeric field location
FieldPos Return the ordinal position of a field
FieldPut Set the value of a field variable
FieldSize Determines the size of a given field
FieldType Determines the type of a given field
Found Determine the success of a previous search operation
Header Return the length of a database file header
LastRec Returns the number of records in an active work area or database
LUpdate Yields the date the database was last updated
RecCount Counts the number of records in a database
RecNo Returns the current record number or identity
RecSize Returns the size of a single record in an active database
Select Returns the work area number for a specified alias
Used Checks whether a database is in use in a work area

RecSize()

RECSIZE()

Returns the size of a single record in an active database.

Syntax

      RECSIZE() --> nBytes

Arguments

(This function has no arguments)

Returns

<nBytes> The record size.

Description

This function returns the number os bytes used by a single record in the currently selected or designated database file. If no database is in use in this work area, the return value from this function will be 0.

Examples

      USE tests NEW
      DBGOTOP()
      RECSIZE()            // Returns 1
      DBGOTO( 50 )
      RECSIZE()

Compliance

Clipper

Files

Library is rdd

Seealso

DISKSPACE(), FIELDNAME(), HEADER(), LASTREC()

Codeblocks

The Harbour implementation of codeblocks

Author : Ryszard Glab <rglab@imid.med.pl>

Compilation of a codeblock.
During compile time the codeblock is stored in the following form:
- the header
- the stream of pcode bytes
The header stores information about referenced local variables.
+0: the pcode byte for _PUSHBLOCK
+1: the number of bytes that defines a codeblock
+3: number of codeblock parameters (declared between || in a codeblock)
+5: number of used local variables declared in procedure/function where
 the codeblock is created
+7: the list of procedure/function local variables positions on the eval
 stack of procedure/function. Every local variable used in a codeblock
 occupies 2 bytes in this list. When nested codeblocks are used then this
 list is created for the outermost codeblock only.
+x: The stream of pcode bytes follows the header.
+y: the pcode byte for _ENDBLOCK

Creation of a codeblock.
When HB_P_PUSHBLOCK opcode is executed then the HB_ITEM structure is created
and placed on the eval stack. The type of item is IT_BLOCK. The value of this
item is a pointer to HB_CODEBLOCK structure. Additionally this item stores the
base of static variables defined for the current function/procedure - this
is used during a codeblock evaluation when the evaluation is called from a code
from other PRG module. Also the number of expected parameters is stored.
The HB_CODEBLOCK structure stores a pointer to the pcodes stream that is
executed during a codeblock evaluation. It stores also the pointer to a table
with local variables references. Values of all local variables defined in a
procedure and used in a codeblock are replaced with a reference to a
value stored in a global memory variables pool. This allows the correct access
to detached local variables in a codeblock returned from this function (either
directly in RETURN statement or indirectly by assigning it to a static or
memvar variable. This automatic and unconditional replace is required because
there is no safe method to find if a codeblock will be accessed from an outside
of a function where it is created.
When nested codeblocks are used then only the outermost codeblock creates
the table - all inner codeblock uses this table. The first element of this
table contains a reference counter for this table. It allows to share the table
between nested codeblock - the table is deleted if there is no more references
to it. This is caused by the fact that a inner codeblock can be created during
evaluation of outer codeblock when local variables don't exist like in this
example:
PROCEDUE Main()
 PRIVATE foo, bar
Test()
 Eval( foo )
 Eval( bar )

PROCEDURE Test()
 LOCAL a := "FOO", b := "BAR"
foo := {|| a + ( bar := Eval( {|| b } ) ) }
RETURN

Evaluation of a codeblock.
Parameters passed to a codeblock are placed on the eval stack before a
codeblock evaluation. They are accessed just like usual function
parameters. When a codeblock parameter is referenced then its position on the
eval stack is used. When a procedure local variable is referenced then the
index into the table of local variables positions (copied from the header) is
used. The negative value is used as an index to distinguish it from the
reference to a codeblock parameter.

Incompatbility with the Clipper.
1) Detached locals passed by reference
There is a little difference between the handling of variables passed by
the reference in a codeblock.
The following code explains it (thanks to David G. Holm)
PROCEDURE Main()
 LOCAL nTest
 LOCAL bBlock1 := MakeBlock()
 LOCAL bBlock2 := {|| DoThing( @nTest ), QOut( "From Main: ", nTest ) }
Eval( bBlock1 )
 Eval( bBlock2 )
RETURN
FUNCTION MakeBlock()
 LOCAL nTest
 RETURN {|| DoThing( @nTest ), QOut( "From MakeBlock: ", nTest ) }
FUNCTION DoThing( n )
n := 42
RETURN NIL

 In Clipper it produces:
From MakeBlock: NIL
From Main: 42
In Harbour it produces (it is the correct output, IMHO)
From MakeBlock: 42
From Main: 42

2) Scope of undeclared variables
 Consider the following code:
PROCEDURE Main()
 LOCAL cb
 cb := Detach()
 ? Eval( cb, 10 )
 RETURN
FUNCTION Detach()
 LOCAL b := {| x | x + a }
 LOCAL a := 0
 RETURN b

In Clipper the 'a' variable in a codeblock has the *local* scope however in
Harbour the 'a' variable has the *private* scope. As a result, in Clipper
this code will print 10 and in Harbour it will raise 'argument error' in
'+' operation.
 This will be true also when the 'a' variable will be declared as PRIVATE

PROCEDURE Main()
 LOCAL cb
 PRIVATE a
 cb := Detach()
 ? Eval( cb, 10 )
 RETURN

The above code also prints 10 in Clipper (even if compiled with -a or -v
switches)

Source : https://github.com/harbour/core/blob/master/doc/codebloc.txt

FT Toolkit Overview

NANFOR.LIB Working Group G. Scott [71620,1521]
Overview UCLA
Version 2.1 October, 1992

THE NANFORUM TOOLKIT (NANFOR.LIB)
PUBLIC DOMAIN USER SUPPORTED CLIPPER FUNCTION LIBRARY

.

1 INTRODUCTION

This is a standard for establishing and maintaining NANFOR.LIB, a public-domain, user-supported library of functions designed to interface with Computer Associates CA-Clipper, version 5.01a, and later. You are encouraged to read it over and forward comments to Glenn Scott, CIS ID [71620,1521].

1.1 History

In October and November of 1990, a discussion on the evolution of third-party products, vendors, and marketing took place on the CompuServe Information Service’s Nantucket Forum (NANFORUM). During this discussion, a forum subscriber named Alexander Santic suggested the idea of a user-supported Clipper function library, available to all on the CompuServe Information Service (CIS). A number of subscribers, including several Clipper third party developers, and some Nantucket employees, expressed their support. This standard was a first step toward organizing such an endeavor.

Release 1.0 of the toolkit was made available in April, 1991 and had nearly 150 functions. By the time version 2.0 was released in August, 1991, the 1.0 library had been downloaded nearly 700 times by CompuServe users. By October of 1992, release 2.0 had been downloaded over 2100 times. The source code had been downloaded nearly 1500 times. In addition, release 2.0 was placed on the massive Internet archive site called SIMTEL20 where it was downloaded by CA- Clipper users worldwide. Over the course of the year that release 2.0 was available, seven patches were issued, each one gathering nearly 1000 downloads.

Computer Associates International, Inc. acquired Nantucket in the summer of 1992 and subsequently renamed NANFORUM to simply CLIPPER. In addition, the Clipper product itself was renamed to CA-CLIPPER. Despite the name changes, forum members decided to keep the toolkit’s name as “The Nanforum Toolkit,” partly for nostalgia. References to NANFORUM in this RFC have been replaced with CLIPPER.

1.2 Trademarks

CA-Clipper is a registered trademark of Computer Associates International, Inc. Computer Associates will be referred to as CA throughout this document.

1.3 Relationship to CA and third party

NANFOR.LIB is a project independent of any third party developer or CA. There is no official “sanction” or “seal of approval” from CA of any kind. In addition, NANFOR.LIB routines will be accepted and included without regard for whether or not routines performing a similar function are included in a commercial third party or CA product.

It is desired that NANFOR.LIB not compete with third party products but rather fill in the holes in CA-Clipper’s standard library. However, there will be some overlap into commercial third-party library functions, so it would be best if this is never taken into consideration when deciding on including a particular function.

Developers submitting NANFOR.LIB routines can and will be corporate developers, third party developers, independent consultant / programmers, hobbyists, and other CA-Clipper people. Perhaps even CA employees will contribute. No one is excluded or included due to any particular affiliation.

CA employees submitting functions are doing so as individuals, and are not making a policy of involving CA in the project, nor are they committing CA to supporting the public domain library.

1.4 CA-Clipper version supported

NANFOR.LIB functions, no matter what language they are written in, will be designed to work with CA-Clipper version 5.01a and later. Many of the functions, particularly those that use the EXTEND system, will be compatible with the Summer 1987 version of CA-Clipper. However, ensuring Summer 87 compatibility will be the responsibility of the user. If a user wants a function to work with Summer 87, she will have to modify the code herself if necessary. In many cases, this is a trivial task.

1.5 Queries from new users

Queries from new users interested in finding NANFOR.LIB should be handled in a uniform and courteous way. A short text file will be created that will briefly explain NANFOR.LIB, who the current people maintaining it are, and how to get a hold of it. This text message can be sent in response to any query. TAPCIS users will find this method very easy to implement.

2 DISTRIBUTION

2.1 Public Domain

NANFOR.LIB, its source code, and documentation will be public-domain software. It is not for “sale”, and shall not be sold. No fee or contribution of any kind will be required for anyone wanting a copy, other than what they would normally pay to download it from CompuServe. Users will be encouraged to submit functions via CompuServe.

2.2 Official repository

It is possible that copies of NANFOR.LIB will be downloaded and distributed elsewhere. This is encouraged, but the only copy of NANFOR.LIB and all associated documentation that will be maintained by volunteers is in an appropriate library on the CIS CLIPPER Forum.

2.2.1 Contents

The deliverables that make up the official posting on CompuServe shall be:

2.2.1.1 NFLIB.ZIP

This will contain the files NANFOR.LIB (library), and NANFOR.NG (Norton Guide).

2.2.1.2 NFSRC.ZIP

This will contain all the library source code, makefile, and other source-code related materials.

2.2.1.3 NFINQ.TXT

This is a short text file used as a response to new user queries (see paragraph 1.5)

2.2.1.4 NFRFC.ZIP

This contains an ASCII format, as well as a WordPerfect 5.1 format copy of NANFOR.RFC named NFRFC.TXT (ASCII) and NFRFC.WP5 (WordPerfect 5.1).

2.2.1.5 NFHDRS.ZIP

This contains templates of the file and documentation header blocks, including a sample, for prospective authors (FTHDR.PRG, FTHDR.ASM, FTHDR.SAM)

2.2.1.6 PATx.ZIP

These are patch files (see paragraph 4.5.1).

3 POLICY ON INCLUDING FUNCTIONS

3.1 “Best Function”

It is possible that more than one developer will submit a function or package of functions that perform substantially the same services. In that event, the referees will choose one to be included based on power, functionality, flexibility, and ease of use. Due to the cooperative, non-commercial nature of the library, no one’s feelings should be hurt by excluding duplicate functions.

In addition, it is possible that two substantially similar functions or packages will benefit from merging them together to provide new functionality. This will be the prerogative of the referees (see paragraph 6.3), in close consultation with the authors.

3.2 Public Domain

Each author submitting source code must include as part of that code a statement that this is an original work and that he or she is placing the code into the public domain. The librarian (see paragraph 6.1) and referees should make a reasonable effort to be sure no copyrighted source code, such as that supplied with some third party libraries, makes it into NANFOR.LIB. However, under no circumstances will the librarian, referees, or any other party other than the submitter be responsible for copyrighted code making it into the library accidentally.

3.3 Source code

Full source code must be provided by the author for every routine to be included in NANFOR.LIB. No routine, no matter what language, will be put into the library on the basis of submitted object code.

3.4 Proper submission

Due to the volume of submissions expected, librarians and referees may not have the time to fix inconsistencies in documentation format, function naming, and other requirements. Therefore, the librarian shall expect source code to arrive in proper format before proceeding further with it.

3.5 Quality and perceived usefulness

In a cooperative effort like this, it is very difficult to enforce some standard of quality and/or usefulness. For example, a package of functions to handle the military’s “Zulu time” may be very useful to some, and unnecessary to others.

The Nanforum Toolkit will by its very nature be a hodgepodge of routines, some of very high quality, some not so high. It is up to the users to improve it. It will be complete in some areas and vastly inadequate in others. It is up to the users to fill in the holes.

We shall err on the side of including “questionable” functions, provided they seem to work. Debates on the quality of the library’s source code shall be encouraged and will take place in the proper message section of the CompuServe CLIPPER forum.

4 LIBRARY MAINTENANCE PROCEDURE

4.1 Selection procedure

Source code will be submitted to the librarian, the documenter (see paragraph 6.2), or one of the referees. Code will be added if it has been reviewed, and approved by at least one, but preferably two, referees.

Code not meeting the documentation or source code formatting standards will generally be returned to the author with instructions.

Referees will test the submitted code. When the referees have finished evaluating a submission, they will report their approval or disapproval to the librarian, with comments.

Every effort should be made to make sure that the C and ASM functions are reviewed by referees with suitable C and ASM experience.

4.2 Update interval

As new functions are submitted, they will added to the library, and the documentation updated. Because this is a volunteer project, and because of the complexity involved in coordinating testing, documentation, and delivery, there will be no fixed interval for updates.

4.3 Version control

NANFOR.LIB will use a numeric version number as follows:

The major version will be numeric, starting from 1. This will change with each quarterly update. The minor version will change with each bug fix. This will start with zero and continue until the next major update, at which point it will revert to zero again.

Typical version numbers might be 1.1, 2.12, 15.2, etc.

The .LIB file, and all associated files, will carry a date stamp corresponding to the day it is released on the CLIPPER forum. The file time stamps shall correspond to the version number (i.e., 1:03am is version 1.3).

4.4 Announcing updates

As the library and its associated documentation are updated, simple announcements will be posted on the CLIPPER forum. This is the only place where an update shall be announced. An update will be announced after it has been successfully uploaded to the appropriate library on CompuServe.

4.5 Bug reports and fixes

The librarian will correlate and verify all bug reports, with the help of the referees. If the referees believe a bug to be serious, they will fix it and the librarian will release a maintenance upgrade immediately. If they consider it a minor bug, they will fix it but wait for the next scheduled upgrade to release it. In this case, a bug fix may be released as a “Patch.”

4.5.1 Patches

A “patch” is simply an ASCII text file containing instructions for editing the source code to a misbehaving function or group of functions. Patches may appear in the CIS library before a maintenance release or quarterly upgrade. A patch file will have a name of the form

PATn.ZIP

where <n> is a number starting from 1. Patches will be numbered sequentially. Patches will be deleted every time a new version of NANFOR.LIB goes on-line.

A patch zipfile may optionally contain .OBJ files to be replaced in user libraries via a LIB utility.

4.6 Technical Support

Technical support will work just as any technical subject on the CompuServe CLIPPER forum works. Users will post questions and suggestions to a particular message area or thread, and anyone who knows the answer should respond. No one is obliged to answer, but it is considered good form to respond with something, even if one doesn’t know the answer.

Support will include help on recompiling the routines or modifying the source.

4.7 Linker Compatibility

In order to assist users of CA-Clipper third party linkers (such as WarpLink or Blinker), NANFOR.LIB may need to broken up into root and overlay sections. How this will be done will be determined when splitting becomes necessary.

The librarian is not responsible for testing every possible linker for NANFOR.LIB compatibility. It is hoped that linker users will submit appropriate link scripts or other documentation for posting in the appropriate section on the CLIPPER forum.

4.8 Splitting NANFOR.LIB by functional category

It is possible that at some future date, it will make sense to split NANFOR.LIB into separate functional areas (e.g., video routines vs. date routines, etc). This RFC will be modified accordingly should that need arise.

5 FUNCTION CODING STANDARDS

The goal of this standard is not to force anyone to rewrite his code for this library, but to create some consistency among the functions so that they may more easily maintained and understood by all CA-Clipper developers, both novice and advanced.

However, it is extremely important that anyone submitting code attach the proper headers and documentation and fill them out correctly. This will make it much easier for code to be added to the library.

5.1 Required sections for each function
5.1.1 Header (author name/etc, version ctrl info)

Figure 1 shows a header that must be included at the top of every piece of source code submitted to the library. This header will work with both CA-Clipper and C code. For ASM code, substitute each asterisk (“*”) with a semicolon (“;”) and delete the slashes (“/”).

/*
 * File......:
 * Author....:
 * CIS ID....: x, x
 * Date......: $Date$
 * Revision..: $Revision$
 * Log file..: $Logfile$
 *
 *
 * Modification history:
 * ---------------------
 *
 * $Log$
 *
 */
Figure 1 - Standard function header.

Note that the date, revision, logfile, and modification history fields will be maintained by the librarian and should not be edited or adjusted by code authors.

The “File” field shall contain the source file name. This is often independent of the individual function name. For example, a function named ft_screen() would be included in SCREEN.PRG. As a rule, source files (.PRG, .C, .ASM) should not have the “FT” prefix.

The “Author” field should have the author’s full name, and CIS number. A CIS number is important, as this will make bug fixing and other correspondence easier.

5.1.2 Public domain disclaimer

Authors shall simply state “This is an original work by [Author’s name] and is hereby placed in the public domain.”

5.1.3 Documentation block
/* $DOC$
 * $FUNCNAME$
 *
 * $ONELINER$
 *
 * $SYNTAX$
 *
 * $ARGUMENTS$
 *
 * $RETURNS$
 *
 * $DESCRIPTION$
 *
 * $EXAMPLES$
 *
 * $SEEALSO$
 *
 * $INCLUDE$
 *
 * $END$
 */

Figure 2 – Standard Documentation Header

The documentation block must be carefully formatted as it is used by the documenter to produce the Norton Guide documentation for the library.

The keywords enclosed in dollar-signs delimit sections of the documentation header analogous to those in the CA-Clipper 5.0 documentation. Documentation should be written in the same style and flavor as the CA material, if possible. Refer to the CA-Clipper documentation for more detail and numerous examples.

The documentation will appear on comment lines between the keywords. Examples are optional. Do not put documentation on the same line as the comment keyword.

Note that the $DOC$ and $END$ keywords serve as delimiters. Do not place any text between $DOC$ and $FUNCNAME$, or any documentation after the $END$ keyword, unless that documentation belongs in the source code file and not in the resultant Norton Guide file.

The $FUNCNAME$ keyword should be followed by the function name, with parentheses, and no arguments or syntax, such as:

$FUNCNAME$            
   ft_screen()

Note the indent for readability. Parentheses shall be added after the function name as shown above.

The $ONELINER$ keyword should be followed by a simple statement expressing what the function does, phrased in the form of a command, e.g.:

$ONELINER$
          Sum the values in an array

The length of the entire $ONELINER$ shall not exceed 60 characters (this is a Norton Guide limitation).

The $SYNTAX$ keyword should be followed by a CA- standard syntax specifier, such as:

$SYNTAX$
         ft_screen( <nTop> [,<nBottom>] ) -> NIL

All parameters have proper prefixes (see paragraph 5.4), and are enclosed in <angle brackets>. Optional parameters are enclosed in [square brackets] as well. An arrow should follow, pointing to the return value. If there is no return value, it should be NIL. Any others should be preceded with the proper prefix (see the CA- Clipper documentation).

The $SEEALSO$ field provides a way to generate cross-references in the Norton Guide help documentation. Use it to point the user to other related functions in the forum toolkit. For example, if ft_func1() is also related to ft_func2() and ft_func3(), the field would look like this:

$SEEALSO$
ft_func2() ft_func3()

Note that fields are separated by spaces and the parentheses are included.

The $INCLUDE$ area allows you to specify what files are included by this function (this will be used to organize the on-line help file, and possibly the master makefile). An example would be

$INCLUDE$
int86.ch int86.inc

Other documentation fields should be self- explanatory. Review the appendix for a sample. All fields are required and must be filled in. Examples should not be considered optional.

5.1.4 Sample header and documentation block

Refer to the Appendix for a sample header and documentation block.

5.1.5 Test driver

A test driver is an optional section of C or CA- Clipper code that will only be compiled under certain circumstances. Developers are encouraged to include a short “test section” in front of their code.

The test driver shall be surrounded by the following pre-processor directives, and placed at the top of the source file:

#ifdef FT_TEST
     [test code]
 #endif

The test driver is currently optional, but authors submitting Clipper code should seriously consider adding it. It is a good way to include short demos within a piece of source code, yet pay no penalty because it is only compiled if needed. It will be invoked when a #define is created that says “#define FT_TEST.” This is a way for submitters to include short test routines with their functions and yet keep it all in one source file. This will be useful to end users.

This test driver may become required in a future version of the RFC.

5.1.6 Code

The source code shall be formatted as described in paragraph 5.4.

5.2 Function names

All NANFOR.LIB functions start with one of two prefixes. If the function is to be called by user programs, then it will begin with the prefix

FT_       ("F", "T", underscore)

Note that “FT” is a mnemonic for “Forum Toolkit.” If the function is “internal” to a module, then it will be prefixed by an underscore:

_FT ( Underscore, "F", "T" )

with no trailing underscore. Examples:

FT_CURDIR() "external"
_ftAlloc() "internal"
5.3 Librarian’s authority to change function names

Some functions will be submitted that either (1) bear a similar name to another function in the library, or (2) bear an inappropriate name. For example, a function called FT_PRINT that writes a character to the screen could be said to be named inappropriately, as a name like FT_PRINT implies some relationship to a printer. The librarian shall have the responsibility to rename submitted functions for clarity and uniqueness.

5.3.1 Changing a function name after it has been released

Once the library is released with a particular function included, then a function name should generally be frozen and not renamed. To do so would probably cause difficulties with users who had used the previous name and are not tracking the changes to the library.

5.4 Source code formatting
5.4.1 Clipper

Clipper code shall be formatted in accordance with CA’s currently defined publishing standard. Although there will surely be some debate over whether this is a good idea, in general, the goal is to provide something consistent that all CA- Clipper developers will recognize.

Minor deviations will be permitted.

The CA standard usually means uppercase keywords, and manifest constants, and lower case everything else.

In addition, identifiers shall be preceded with the proper metasymbol:

 n Numeric
 c Character or string
 a Array
 l Logical, or boolean
 d Date
 m Memo
 o Object
 b Code block
 h Handle
 x Ambiguous type

Refer to the CA-Clipper documentation for samples of CA’s code publishing format.

5.4.2 C

C source code shall be formatted in a generally accepted way, such as Kernighan and Ritchie’s style used in the book _The C Programming Language_.” The use of CA’s EXTEND.H is encouraged.

5.4.3 ASM

No particular formatting conventions are required for assembly language source code, since assembly code formatting is fairly standard. Lowercase code is preferred. Be sure to include the proper documentation header information, as described above.

Do not place ASM code in DGROUP. See paragraph 5.11.

5.5 Organization into .PRGs

Since many different people will be submitting routines, it is probably best if all routines that belong together are housed in the same .PRG. If there is some reason to split the .PRG, the referees and the librarian will handle that as part of library organization.

5.6 Header files

Including a “.ch” or “.h” or “.inc” file with each function would get unwieldy. For the purpose of NANFOR.LIB, all #defines, #ifdefs, #commands, #translates, etc that belong to a particular source file shall be included at the top of that source file. Since few submissions will split over multiple source files, there will usually be no need to #include a header in more than one place.

If a “ch” file will make the end user’s job of supplying parameters and other information to NANFOR.LIB functions easier, then it shall be submitted as a separate entity. The referees will decide on whether to include these directives in a master NANFOR.CH file.

5.7 Clipper 5.0 Lexical Scoping

NANFOR.LIB routines that are written in CA-Clipper will make use of CA-Clipper 5.0’s lexical scoping features to insulate themselves from the rest of the user’s application.

For example, all “privates” shall generally be declared “local.”

If a package of Clipper functions is added to the library, then the lower-level, support functions will be declared STATIC as necessary.

5.8 Use of Publics

Authors shall not use PUBLIC variables in NANFOR.LIB functions, due to the potential interference with an end-user’s application or vice versa.

If a global is required for a particular function or package of functions, that global shall be accessed through a function call interface defined by the author (.e.g, “ft_setglobal()”, “ft_getglobal()”, and so on). Globals such as these shall be declared static in the .PRG that needs them.

5.9 Use of Macros (“&” operator)

The use of macros in NANFOR.LIB functions will be, for the most part, unnecessary. Since this is a CA-Clipper 5.0 library, the new 5.0 codeblock construct should be used instead. Anyone having trouble figuring out how to convert a macro to a codeblock should post suitable questions on the CLIPPER forum on CompuServe.

5.10 Use of Static Functions

Any CA-Clipper 5.0 function that is only needed within the scope of one source file shall be declared STATIC. This applies mostly to NANFOR.LIB “internals” (names with an “_ft” prefix) that user programs need not access.

5.11 Use of DGROUP in ASM Functions

Use of DGROUP in assembly language functions shall be avoided, in accordance with CA’s recommendations. Assembly functions written for NANFOR.LIB shall use a segment named _NanFor, as in the following example:

Public FT_ChDir
Extrn _ftDir:Far
Segment _NanFor Word Public "CODE"
 Assume CS:_NanFor
Proc FT_ChDir Far
 .
 .
 .
 Ret
 Endp FT_ChDir
 Ends _NanFor
End
5.12 Use of "Internals"

Use of CA-Clipper “internals” by code authors is allowed. However, should any code make use of an internal, i.e., a function or variable that is not part of the published CA-Clipper API, then that internal shall be clearly marked in the documentation (under “DESCRIPTION”) and in the actual code, everywhere the internal is used.

5.13 Procedures for compiling functions
5.13.1 Clipper

Clipper functions will be compiled under the current release of CA-Clipper 5.0, with the following compiler options:

/n /w /l /r

Note that neither line numbers nor debugging information will find its way into NANFOR.LIB, to keep the code size down. End users may recompile NANFOR.LIB with these options enabled if they want to view NANFOR.LIB source in the debugger.

5.13.2 ASM

Assembly functions must compile successfully under any MSDOS assembler capable of producing the proper .OBJ file. However, care should be taken not to use any macros or special syntax particular to one vendor’s assembler, because that would make it difficult for end users to recompile the source. The preferred assembler is MASM, followed by TASM.

5.13.3 C

C functions must compile successfully under any C compiler capable of interfacing to CA-Clipper. Obviously, Microsoft C, version 5.1, is the preferred development environment. Care should be taken, when writing C code, not to use any special compiler features particular to one vendor’s C compiler, because that would make it difficult for end users to recompile the source.

5.14 Functions requiring other libraries

It is very easy to write functions in C that call the compiler’s standard C library functions. However, NANFOR.LIB can make no assumptions about the end user’s ability to link in the standard library or any other library. Therefore, no function will be added to NANFOR.LIB that requires any other third party or compiler manufacturer’s library.

6 ADMINISTRATIVE DETAILS

6.1 Librarian

The librarian will be the person who rebuilds the library from the sources and uploads the resulting deliverables to the proper CLIPPER forum library on CompuServe. The librarian generally does *not* test code or edit source code to repair formatting errors.

6.2 Documenter

The documenter is responsible for maintaining the Norton and guides and keeping it in sync with each new release.

6.3 Referees

Referees are volunteers who read source code, clean it up, compile it, look for problems like potentially problematic C code, decide on which function is best, consolidate common functions, etc. They make sure the header and documentation blocks are present. There is no election or term for refereedom. One simply performs the task as long as one can and bows out when necessary.

6.4 Transitions

Not everyone will be able to stay around forever to keep working on this project. Therefore, it is the responsibility of each referee, documenter, or librarian to announce as far in advance as possible his or her intention to leave, in order to give everyone a chance to come up with a suitable replacement. Don’t let it die!

7 CONTRIBUTORS

Current contributors, directly and indirectly, to this document include:

Don Caton [71067,1350]
Bill Christison [72247,3642]
Robert DiFalco [71610,1705]
Paul Ferrara [76702,556]
David Husnian [76064,1535]
Ted Means [73067,3332]
Alexander Santic [71327,2436]
Glenn Scott [71620,1521]
Keith Wire [73760,2427]
Craig Yellick [76247,541]
James Zack [75410,1567]

NOTES :

  • In Harbour library file name of NanForum Toolkit is hbnf.a
  • Maybe some functions :
    • obsoleted,
    • used some low-level hardware access or some OS specific features,
    • so not included in hbnf library.

C5_HEADER

 HEADER()
 Return the current database file header length
------------------------------------------------------------------------------
 Syntax

     HEADER() --> nBytes

 Returns

     HEADER() returns the number of bytes in the header of the current
     database file as an integer numeric value.  If no database file is in
     use, HEADER() returns a zero (0).

 Description

     HEADER() is a database function that is used with LASTREC(), RECSIZE(),
     and DISKSPACE() to create procedures for backing up files.

     By default, HEADER() operates on the currently selected work area.  It
     will operate on an unselected work area if you specify it as part of an
     aliased expression (see example below).

 Examples

     .  This example determines the header size of Sales.dbf:

        USE Sales NEW
        ? HEADER()            // Result: 258

     .  This example defines a pseudofunction, DbfSize(), that uses
        HEADER() with RECSIZE() and LASTREC() to calculate the size of the
        current database file in bytes:

        #define DbfSize()      ((RECSIZE() * LASTREC()) + ;
              HEADER() + 1)

        Later you can use DbfSize() as you would any function:

        USE Sales NEW
        USE Customer NEW
        ? DbfSize()
        ? Sales->(DbfSize())

 Files   Library is EXTEND.LIB.

See Also: DISKSPACE() LASTREC() RECSIZE()

 

Format of xBase Files

xBase File Format Description

.ch Files

What are .ch files ?

ch means “C header” and as name implied, this coding way borrowed from C language.

Normally, that files written individually and are included into .prg file via #include directive.

In general, .ch files includes pre-processor directives for constant declarations, pseudo functions and commands; including #include directives for other files. These lines are general purpose code line and may or not may #included by more than one .prg files.

For example, say we have some values like :

pi := 22 / 7
MaxUserCount := 10

If we declare this constants as above in the .prg file, this two identifiers are variables.

We can declare that values in another way :

#define pi 22 / 7
#define MaxUserCount 10

In this case this two identifiers are constant, so their values has been fixed, no changeable afterward. #define is a pre-processor directive, these two identifiers are meta-constants and can be use in the code (.prg) file, after defined place ( if defined at top of file, can be use anywhere in that file).

I we want use that two value into other code (.prg) files, we need repeat above two lines (consider a quite large list) for all that code (.prg) files. And of course when a modification required, we need edit all code files.

In this case we build a .ch file that contains that definitions and add an #include directive to code files that need this definitions.

That’s all.

.ch file extension is a general tradition and doesn’t implies any specific action to compiler.

C5 File Management

C5 File Management Commands and Functions

High Level :

ADIR()* :

Fill a series of arrays with directory information

ADIR( [ <cFilespec> ],
    [ <aFilenames> ],
    [ <aSizes> ],
    [ <aDates> ],
    [ <aTimes> ],
    [ <aAttributes> ] ) --> nFiles

CLOSE :

Close a specific set of files

CLOSE [ <idAlias> | ALL | ALTERNATE | DATABASES | FORMAT |INDEXES ]

COPY FILE :

Copy a file to a new file

COPY FILE <xcSourceFile> TO <xcTargetFile> | <xcDevice>

CURDIR() :

Return the current DOS directory

CURDIR( [ <cDrivespec> ] ) --> cDirectory

DELETE FILE :

Remove a file from disk

DELETE FILE | ERASE <xcFile>

DIR* :

Display a listing of files from a specified path

DIR [ <xcFileSpec> ]

        DIRCHANGE() :

      Change the current DOS directory

       DIRCHANGE(<cDir>) --> nSuccess

DIRECTORY() :

Create an array of directory and file information

DIRECTORY( <cDirSpec>, [ <cAttributes> ] ) --> aDirectory

 DIRMAKE()

         Create a directory

        DIRMAKE(<cNewDir>) --> nSuccess

          DIRREMOVE() :

     Remove a directory

       DIRREMOVE(<cDirName>) --> nSuccess

          DISKCHANGE() :

       Change the current DOS disk drive

        DISKCHANGE(<cDrive>) --> lSuccess

          DISKNAME() :

                  Return the current DOS drive

        DISKNAME() --> cDrive

DISKSPACE() :

Return the space available on a specified disk

DISKSPACE( [ <nDrive> ] ) --> nBytes

ERASE :

Remove a file from disk

ERASE | DELETE FILE <xcFile>

FILE() :

Determine if files exist in the default directory or path

FILE( <cFilespec> ) --> lExists

RENAME :

Change the name of a file

RENAME <xcOldFile> TO <xcNewFile>

SET ALTERNATE :

Echo console output to a text file

SET ALTERNATE TO [ <xcFile> [ADDITIVE]]
SET ALTERNATE on | OFF | <xlToggle>

SET DEFAULT :

Set the CA-Clipper default drive and directory

SET DEFAULT TO [ <xcPathspec> ]

SET PATH :

Specify the CA-Clipper search path for opening files

SET PATH TO [ <xcPathspec list> ]

TYPE :

Display the contents of a text file

TYPE <xcFile> [TO PRINTER] [TO FILE <xcOutFile> ]

Low-level :

FCLOSE() :

Close an open binary file and write DOS buffers to disk

FCLOSE( <nHandle> ) --> lError

FCREATE() :

Create and/or truncate a binary file to zero length

FCREATE( <cFile>, [ <nAttribute> ] ) --> nHandle

FERASE() :

Delete a file from disk

FERASE( <cFile> ) --> nSuccess

FERROR() :

Test for errors after a binary file operation

FERROR() --> nErrorCode

FOPEN() :

Open a binary file

FOPEN( <cFile>, [ <nMode> ] ) --> nHandle

FREAD() :

Read characters from a binary file into a buffer variable

FREAD( <nHandle>, @<cBufferVar>, <nBytes> ) --> nBytes

FREADSTR() :

Read characters from a binary file

FREADSTR( <nHandle>, <nBytes> ) --> cString

          FRENAME() :

Change the name of a file

       FRENAME( <cOldFile>, <cNewFile> ) --> nSuccess

FSEEK() :

Set a binary file pointer to a new position

FSEEK( <nHandle>, <nOffset>, [ <nOrigin> ] ) --> nPosition

FWRITE() :

Write to an open binary file

FWRITE( <nHandle>, <cBuffer>, [ <nBytes> ] )
    --> nBytesWritten

HEADER() :

Return the current database file header length

HEADER() --> nBytes